Existence of Limit
is said to exists if when x is approaching to "a" (from both the sides) then the value of the function f(x) is approaching to same finite value.
Thus, exists . = L (L must be finite)
Here, = Left hand limit of function f(x) at x = a, it means when you are approaching towards "a" from left side of "a" then what is the value of the function f(x).
and = Right hand limit of function f(x) at x = a, it means when you are approaching towards "a" from right side of "a" then what is the value of the function f(x).
Thus, exists . = L (L must be finite)
Here, = Left hand limit of function f(x) at x = a, it means when you are approaching towards "a" from left side of "a" then what is the value of the function f(x).
and = Right hand limit of function f(x) at x = a, it means when you are approaching towards "a" from right side of "a" then what is the value of the function f(x).
Value of Continuous Function
If the function f(x) is continuous at x = a then
provided that x = a should not be the boundary point of f(x).
Note : All polynomial, logarithamic, exponential, trigonometric and inverse trigonometric functions are continuous in their domain.
provided that x = a should not be the boundary point of f(x).
Note : All polynomial, logarithamic, exponential, trigonometric and inverse trigonometric functions are continuous in their domain.
Continuity of a Function
A function f(x) is said to be continuous at x = a if and ony if
(1) f(x) is defined at x = a, i.e f(a) defined.
and (2) exist,
and (3)
We can say function f(x) is said to be continuous at x = a when
= Finite
(1) f(x) is defined at x = a, i.e f(a) defined.
and (2) exist,
and (3)
We can say function f(x) is said to be continuous at x = a when
= Finite
Discontinuity of a Function
A given function f(x) can be discontinuous at x = a due to following reasons
(1) f(x) is not defined at x = a, i.e f(a) not defined.
or (2) $$\mathop {\lim }\limits_{x \to a} f\left( x \right)$$ does not exists,
or (3) $$f\left( a \right) \ne \mathop {\lim }\limits_{x \to a} f\left( x \right)$$
(1) f(x) is not defined at x = a, i.e f(a) not defined.
or (2) $$\mathop {\lim }\limits_{x \to a} f\left( x \right)$$ does not exists,
or (3) $$f\left( a \right) \ne \mathop {\lim }\limits_{x \to a} f\left( x \right)$$
Limiting Value of a Function
If = M then
limiting value of the function f(x) or M
Note : Here M may or may not be finite.
limiting value of the function f(x) or M
Note : Here M may or may not be finite.
Value of Limit of Greatest and Fractional Integer Function
If I represent a integer then
and
Also
and
and
Also
and
Indeterminate Forms
If direct substitution of while evaluating leads to one of the following forms
then it is called indeterminate form.
Note : (1) Here 0, 1 and are not exact values.
(2) Limit of can't be find directly, only can be find directly. That is why if you get any one of those forms , first convert into form and then find limit.
then it is called indeterminate form.
Note : (1) Here 0, 1 and are not exact values.
(2) Limit of can't be find directly, only can be find directly. That is why if you get any one of those forms , first convert into form and then find limit.
Fundamental Theorems on Limits :
Let $\lim \limits_{x \rightarrow a} f(x)=$ and $\lim\limits _{x \rightarrow a} g(x)=m$. If $\ell$ and $m$ are finite, then:
(A) $\quad \lim \limits_{x \rightarrow a}\{f(x) \pm g(x)\}=\ell \pm m$
(B) $\quad \lim \limits_{x \rightarrow a}\{f(x) \cdot g(x)\}=\ell \cdot m$
(C) $\quad \lim \limits_{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\ell}{m}$, provided $m \neq 0$
(D) $\quad \lim \limits_{x \rightarrow a} k f(x)=k \lim \limits_{x \rightarrow a} f(x)=k \ell$; where $k$ is a constant.
(E) $\quad \lim \limits_{x \rightarrow a} f(g(x))=f\left(\lim \limits_{x \rightarrow a} g(x)\right)=f(m)$; provided $f$ is continuous at $g(x)=m$.
(A) $\quad \lim \limits_{x \rightarrow a}\{f(x) \pm g(x)\}=\ell \pm m$
(B) $\quad \lim \limits_{x \rightarrow a}\{f(x) \cdot g(x)\}=\ell \cdot m$
(C) $\quad \lim \limits_{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\ell}{m}$, provided $m \neq 0$
(D) $\quad \lim \limits_{x \rightarrow a} k f(x)=k \lim \limits_{x \rightarrow a} f(x)=k \ell$; where $k$ is a constant.
(E) $\quad \lim \limits_{x \rightarrow a} f(g(x))=f\left(\lim \limits_{x \rightarrow a} g(x)\right)=f(m)$; provided $f$ is continuous at $g(x)=m$.
L'Hospital's Rule
This rule states that, if $\lim \limits_{x \rightarrow a} \frac{f(x)}{g(x)}$, reduces to $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
Then, differentiate numerator and denominator till this form is removed.
i.e. $\lim \limits_{x \rightarrow a} \frac{f(x)}{g(x)}=\lim \limits_{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, provided the later limit exists.
But, if it again take form $\left(\frac{0}{0}\right.$ or $\left.\frac{\infty}{\infty}\right)$,
then $\lim \limits_{x \rightarrow a} \frac{f(x)}{g(x)}=\lim \limits_{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim \limits_{x \rightarrow a} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}$
and this process is continued till $\left(\frac{0}{0}\right.$ or $\left.\frac{\infty}{\infty}\right)$ form is removed.
Note :
(1) L'Hospital's rule is applicable to only two indeterminate forms $\left(\frac{0}{0}\right.$ or $\left.\frac{\infty}{\infty}\right)$.
(2) f(x) and g(x) should be differentiable at x = a and f'(x) and g'(x) must be continuous at x = a then you can apply L'Hospital's Rule.
Then, differentiate numerator and denominator till this form is removed.
i.e. $\lim \limits_{x \rightarrow a} \frac{f(x)}{g(x)}=\lim \limits_{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, provided the later limit exists.
But, if it again take form $\left(\frac{0}{0}\right.$ or $\left.\frac{\infty}{\infty}\right)$,
then $\lim \limits_{x \rightarrow a} \frac{f(x)}{g(x)}=\lim \limits_{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim \limits_{x \rightarrow a} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}$
and this process is continued till $\left(\frac{0}{0}\right.$ or $\left.\frac{\infty}{\infty}\right)$ form is removed.
Note :
(1) L'Hospital's rule is applicable to only two indeterminate forms $\left(\frac{0}{0}\right.$ or $\left.\frac{\infty}{\infty}\right)$.
(2) f(x) and g(x) should be differentiable at x = a and f'(x) and g'(x) must be continuous at x = a then you can apply L'Hospital's Rule.
SOME IMPORTANT EXPANSIONS IN EVALUATING LIMITS
Sometimes, following expansions are useful in evaluating limits. You should remember those expansions :
1. $\log (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\frac{x^5}{5} \cdots(-1 < x \leq 1)$
2. $\log (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\frac{x^5}{5} \cdots(-1 < x \leq 1)$
3. $e^x=1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\frac{x^4}{4 !} \cdots$
4. $e^{-x}=1-x+\frac{x^2}{2 !}-\frac{x^3}{3 !}+\frac{x^4}{4 !} \cdots$
5. $a^x=1+x\left(\log _e a\right)+\frac{x^2}{2 !}\left(\log _e a\right)^2+\cdots$
6. $\sin x=x-\frac{x^3}{3 !}+\frac{x^5}{5 !}-\frac{x^7}{7 !} \cdots$
7. $\cos x=1-\frac{x^2}{2 !}+\frac{x^4}{4 !}-\frac{x^6}{6 !} \cdots$
8. $\tan x=x+\frac{x^3}{3}+\frac{2}{15} x^5+\cdots$
9. $(1+x)^n=1+\frac{n x}{1 !}+\frac{n(n-1) x^2}{2 !}$ $$ +\frac{n(n-1)(n-2) x^3}{3 !}+\ldots n \in R \text { and }|x|<1 $$
10. $\frac{x^n-a^n}{x-a}=x^{n-1}+x^{n-2} a+x^{n-3} a^2+\ldots+a^{n-1}$
11. $(1+x)^{1 / x}=e\left(1-\frac{x}{2}+\frac{11 x^2}{24}+\ldots\right)$
12. $\sin ^{-1} x=x+\frac{1^2}{3 !} x^3+\frac{1^2 \cdot 3^2}{5 !} x^5+\frac{1^2 \cdot 3^2 \cdot 5^2}{7 !} x^7+\ldots$
13. $\tan ^{-1} x=x-\frac{x^3}{3}+\frac{x^5}{5}+\ldots$
14. $\sec ^{-1} x=1+\frac{x^2}{2 !}+\frac{5 x^4}{4 !}+\frac{61 x^6}{6 !}+\ldots$
14. $\left(\sin ^{-1} x\right)^2=\frac{2}{2 !} x^2+\frac{2 \cdot 2^2}{4 !} x^4+\frac{2 \cdot 2^2 \cdot 4^2}{6 !} x^6+\ldots$
15. $x \cot x=1-\frac{x^3}{3}+\frac{x^4}{45}-\frac{2 x^6}{945}+\ldots$
16. $\sec x=1+\frac{x^2}{2}+\frac{5 x^4}{24}+\frac{61 x^6}{720}+\ldots$
17. $x \operatorname{cosec} x=1+\frac{x^2}{6}+\frac{7 x^4}{360}+\frac{31 x^6}{15120}+\ldots$
1. $\log (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\frac{x^5}{5} \cdots(-1 < x \leq 1)$
2. $\log (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\frac{x^5}{5} \cdots(-1 < x \leq 1)$
3. $e^x=1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\frac{x^4}{4 !} \cdots$
4. $e^{-x}=1-x+\frac{x^2}{2 !}-\frac{x^3}{3 !}+\frac{x^4}{4 !} \cdots$
5. $a^x=1+x\left(\log _e a\right)+\frac{x^2}{2 !}\left(\log _e a\right)^2+\cdots$
6. $\sin x=x-\frac{x^3}{3 !}+\frac{x^5}{5 !}-\frac{x^7}{7 !} \cdots$
7. $\cos x=1-\frac{x^2}{2 !}+\frac{x^4}{4 !}-\frac{x^6}{6 !} \cdots$
8. $\tan x=x+\frac{x^3}{3}+\frac{2}{15} x^5+\cdots$
9. $(1+x)^n=1+\frac{n x}{1 !}+\frac{n(n-1) x^2}{2 !}$ $$ +\frac{n(n-1)(n-2) x^3}{3 !}+\ldots n \in R \text { and }|x|<1 $$
10. $\frac{x^n-a^n}{x-a}=x^{n-1}+x^{n-2} a+x^{n-3} a^2+\ldots+a^{n-1}$
11. $(1+x)^{1 / x}=e\left(1-\frac{x}{2}+\frac{11 x^2}{24}+\ldots\right)$
12. $\sin ^{-1} x=x+\frac{1^2}{3 !} x^3+\frac{1^2 \cdot 3^2}{5 !} x^5+\frac{1^2 \cdot 3^2 \cdot 5^2}{7 !} x^7+\ldots$
13. $\tan ^{-1} x=x-\frac{x^3}{3}+\frac{x^5}{5}+\ldots$
14. $\sec ^{-1} x=1+\frac{x^2}{2 !}+\frac{5 x^4}{4 !}+\frac{61 x^6}{6 !}+\ldots$
14. $\left(\sin ^{-1} x\right)^2=\frac{2}{2 !} x^2+\frac{2 \cdot 2^2}{4 !} x^4+\frac{2 \cdot 2^2 \cdot 4^2}{6 !} x^6+\ldots$
15. $x \cot x=1-\frac{x^3}{3}+\frac{x^4}{45}-\frac{2 x^6}{945}+\ldots$
16. $\sec x=1+\frac{x^2}{2}+\frac{5 x^4}{24}+\frac{61 x^6}{720}+\ldots$
17. $x \operatorname{cosec} x=1+\frac{x^2}{6}+\frac{7 x^4}{360}+\frac{31 x^6}{15120}+\ldots$
Some Standard Limits
(a) (i) $\quad \lim \limits_{x \rightarrow 0} \frac{\sin x}{x}=\lim \limits_{x \rightarrow 0} \frac{\tan x}{x}=1$
[Where $x$ is measured in radians ]
(ii) $\quad \lim \limits_{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=\lim \limits_{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1$
(iii) $\quad \lim \limits_{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad ; \quad \lim \limits_{x \rightarrow 0}(1+a x)^{\frac{1}{x}}=e^a$
(iv) $\quad \lim \limits_{x \rightarrow 0}\left(1+\frac{1}{x}\right)^x=$ e $; \lim \limits_{x \rightarrow 0} \left(1+\frac{a}{x}\right)^x=e^a$
(v) $\quad \lim \limits_{x \rightarrow 0} \frac{e^x-1}{x}=1 \quad ; \lim \limits_{x \rightarrow 0} \frac{a^x-1}{x}=\log _e a=\ell$ na $\quad, a>0$
(vi) $\quad \lim \limits_{x \rightarrow 0} \frac{\ell n(1+x)}{x}=1$
(vii) $\quad \lim \limits_{x \rightarrow a} \frac{x^n-a^n}{x-a}=n a^{n-1}$
(b) If $$\mathop {\lim }\limits_{x \to a} f\left( x \right) = 0$$, when $x \rightarrow a$, then
(i) $\quad \lim \limits_{x \rightarrow a} \frac{\sin f(x)}{f(x)}=1$
(ii) $\lim \limits_{x \rightarrow a} \cos f(x)=1$
(iii) $\quad \lim \limits_{x \rightarrow a} \frac{\tan f(x)}{f(x)}=1$
(iv) $\lim \limits_{x \rightarrow a} \frac{e^{f(x)}-1}{f(x)}=1$
(v) $\quad \lim \limits_{x \rightarrow a} \frac{b^{f(x)}-1}{f(x)}=\ell n b, \quad(b>0)$
(vi) $\lim \limits_{x \rightarrow a} \frac{\ell n(1+f(x))}{f(x)}=1$
(vii) $\quad \lim \limits_{x \rightarrow a}(1+f(x))^{\frac{1}{f(x)}}=e$
(viii) $$\mathop {\lim }\limits_{x \to a} {{1 - \cos \left( {f\left( x \right)} \right)} \over {{{\left( {f\left( x \right)} \right)}^2}}} = {1 \over 2}$$
(c) $\quad \lim \limits_{x \rightarrow a} f(x)=A>0$ and $\lim \limits_{x \rightarrow a} \phi(x)=B\left(a\right.$ finite quantity), then $\lim \limits_{x \rightarrow a}[f(x)]^{](x)}=A^B$.
(ii) $\quad \lim \limits_{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=\lim \limits_{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1$
(iii) $\quad \lim \limits_{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad ; \quad \lim \limits_{x \rightarrow 0}(1+a x)^{\frac{1}{x}}=e^a$
(iv) $\quad \lim \limits_{x \rightarrow 0}\left(1+\frac{1}{x}\right)^x=$ e $; \lim \limits_{x \rightarrow 0} \left(1+\frac{a}{x}\right)^x=e^a$
(v) $\quad \lim \limits_{x \rightarrow 0} \frac{e^x-1}{x}=1 \quad ; \lim \limits_{x \rightarrow 0} \frac{a^x-1}{x}=\log _e a=\ell$ na $\quad, a>0$
(vi) $\quad \lim \limits_{x \rightarrow 0} \frac{\ell n(1+x)}{x}=1$
(vii) $\quad \lim \limits_{x \rightarrow a} \frac{x^n-a^n}{x-a}=n a^{n-1}$
(b) If $$\mathop {\lim }\limits_{x \to a} f\left( x \right) = 0$$, when $x \rightarrow a$, then
(i) $\quad \lim \limits_{x \rightarrow a} \frac{\sin f(x)}{f(x)}=1$
(ii) $\lim \limits_{x \rightarrow a} \cos f(x)=1$
(iii) $\quad \lim \limits_{x \rightarrow a} \frac{\tan f(x)}{f(x)}=1$
(iv) $\lim \limits_{x \rightarrow a} \frac{e^{f(x)}-1}{f(x)}=1$
(v) $\quad \lim \limits_{x \rightarrow a} \frac{b^{f(x)}-1}{f(x)}=\ell n b, \quad(b>0)$
(vi) $\lim \limits_{x \rightarrow a} \frac{\ell n(1+f(x))}{f(x)}=1$
(vii) $\quad \lim \limits_{x \rightarrow a}(1+f(x))^{\frac{1}{f(x)}}=e$
(viii) $$\mathop {\lim }\limits_{x \to a} {{1 - \cos \left( {f\left( x \right)} \right)} \over {{{\left( {f\left( x \right)} \right)}^2}}} = {1 \over 2}$$
(c) $\quad \lim \limits_{x \rightarrow a} f(x)=A>0$ and $\lim \limits_{x \rightarrow a} \phi(x)=B\left(a\right.$ finite quantity), then $\lim \limits_{x \rightarrow a}[f(x)]^{](x)}=A^B$.
Solving Limits By Using Substitution :
For solving this limit $\lim \limits_{x \rightarrow a} f(x)$ sometime we put $x={a+h \text { }}$ or $x={a-h \text { }}$ and we take $$\mathop {\lim }\limits_{h \to 0} $$
$ \text { i.e } \lim \limits_{x \rightarrow a} f(x) =\lim \limits_{h \rightarrow 0} f(a+h)= \\ \lim \limits_{h \rightarrow 0} f(a-h) $
Note : (1) $\lim \limits_{x \rightarrow a^{+}} f(\underline{x})=\lim \limits_{h \rightarrow 0^{+}} f(a+h)=\lim \limits_{h \rightarrow 0^{-}} f(a-h)$
(2) $\lim \limits_{x \rightarrow a^{-}} f({x})=\lim \limits_{h \rightarrow 0^{+}} f(a-h)=\lim \limits_{h \rightarrow 0^{-}} f(a+h)$
$ \text { i.e } \lim \limits_{x \rightarrow a} f(x) =\lim \limits_{h \rightarrow 0} f(a+h)= \\ \lim \limits_{h \rightarrow 0} f(a-h) $
Note : (1) $\lim \limits_{x \rightarrow a^{+}} f(\underline{x})=\lim \limits_{h \rightarrow 0^{+}} f(a+h)=\lim \limits_{h \rightarrow 0^{-}} f(a-h)$
(2) $\lim \limits_{x \rightarrow a^{-}} f({x})=\lim \limits_{h \rightarrow 0^{+}} f(a-h)=\lim \limits_{h \rightarrow 0^{-}} f(a+h)$