Mode For Grouped Frequency Distribution
Step-II : Call $f_{m-1}$ and $f_{m+1}$ to be the frequencies of the classes immediately preceding and succeeding the modal class.
Step-III : Calculate mode $\left(M_0\right)$ by using the following formula:
$$ \mathrm{M}_{\mathrm{o}}=x_l+\frac{f_m-f_{m-1}}{2 f_m-f_{m-1}-f_{m+1}} \times w $$
Where,
$x_l$ - lower limit of model class
$f_m$ - frequency of the model class
$f_{m-1}$ - frequency of the class preceding model class
$f_{m+1}$ - frequency of the class succeeding model class
$w$ - width of the modal class
Coefficient of Variation :
For comparing two or more series for variability, we calculate the coefficient of standard deviation and the coefficient of variation.
The coefficient of standard deviation is defined as :
coefficient of standard deviation $=\frac{\sigma}{\bar{x}}$.
The coefficient of variation is defined as :
coefficient of variation $=\left(\frac{\sigma}{\bar{x}}\right) \times 100$.
where $\bar{x}$ and $$\sigma $$ as usual represent respectively the mean and the standard deviation of the data.
Combined Standard Deviation and Variance :
Let $\sigma_1$ and $\sigma_2$ be the standard deviations of the two groups containing $n_1$ and $n_2$ items respectively. Let $\bar{x}_1$ and $\bar{x}_2$ be their respective A.M. Let $\overline{\mathrm{x}}$ and $\sigma$ be the A.M. and S.D. of the combined group respectively. Then
$$ \begin{aligned} & \bar{x}=\frac{n_1 \bar{x}_1+n_2 \bar{x}_2}{n_1+n_2}, \\\\ & S.D=\sigma=\sqrt{\frac{n_1\left[\sigma_1^2+\left(\bar{x}_1-\bar{x}\right)^2\right]+n_2\left[\sigma_2^2+\left(\bar{x}_2-\bar{x}\right)^2\right]}{n_1+n_2}} \end{aligned} $$
Variance , $\sigma^2=\frac{n_1 \sigma_1^2+n_2 \sigma_2^2}{n_1+n_2}+\frac{n_1 n_2}{\left(n_1+n_2\right)^2}\left(\bar{x}_1-\bar{x}_2\right)^2$
Mathematical Properties of Variance
1. $\operatorname{Var} .\left(x_i+\mathrm{b}\right)=\operatorname{Var} .\left(x_i\right)$
2. Var. $\left(a x_i\right)=\mathrm{a}^2 \cdot \operatorname{Var}\left(x_i\right)$
3. $\operatorname{Var}\left(a x_i+b\right)=a^2 \cdot \operatorname{Var}\left(x_i\right)$
where $\lambda, a, b$, are constant.
Method of Calculating Standard Deviation and Variance for Grouped Data :
If a variable takes values with respective frequencies then standard deviation is given by
Variance,
Method of Calculating Standard Deviation and Variance for Ungrouped Data :
Let us consider $n$ observations $x_1, x_2, \ldots, x_n$. Let the arithmetic mean of these observations be $\bar{x}$. Then standard deviation is given by
$$
\sigma=\sqrt{\frac{1}{n}\left[\left(x_1-\bar{x}\right)^2+\left(x_2-\bar{x}\right)^2+\ldots+\left(x_n-\bar{x}\right)^2\right]}$$
$$=\sqrt{\frac{1}{n} \sum\limits_{i=1}^n\left(x_i-\bar{x}\right)^2} \text {. }
$$
And Variance, $${\sigma ^2} = {{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline x } \right)}^2}} } \over n}$$
To reduce number of arithmetic operations to be carried out we simplify the above equation.
$ \text { We have } \sigma=\sqrt{\frac{1}{n} \sum\limits_{i=1}^n\left(x_i-\bar{x}\right)^2}
$
$=\sqrt{\frac{1}{n} \sum\limits_{i=1}^n\left(x_i^2-2 x_i \bar{x}+\bar{x}^2\right)}$
$ = \sqrt{\frac{1}{n} \sum x_i^2-(2 \bar{x}) \frac{1}{n} \sum x_i+(\bar{x})^2 \frac{1}{n} \sum 1}$
$=\sqrt{\frac{1}{n} \sum x_i^2-2(\bar{x})^2+(\bar{x})^2}$
$ = \sqrt{\frac{1}{n} \sum x_i^2-(\bar{x})^2}$
$ =\sqrt{\frac{1}{n}\left[\sum x_i^2-\frac{\left(\sum x_i\right)^2}{n}\right]}$
And Variance, $${\sigma ^2} = {{\sum\limits_{i = 1}^n {{{\left( {{x_i}} \right)}^2}} } \over n} - {\left( {\overline x } \right)^2}$$
STANDARD DEVIATION and VARIANCE
Standard deviation of a given set of observations is defined as the positive square root of the average of squared deviations of all observations taken from their arithmetic mean. It is generally denoted by Greek alphabet $\sigma$ or s.
The square of the standard deviation is called variance and is denoted by $\sigma^2$.
Mean Deviation (M.D) for Grouped Data
Then Mean deviation from mean $=\frac{\sum\limits_{i=1}^n f_i\left|x_i-\bar{x}\right|}{\sum\limits_{i=1}^n f_i}$
where $\bar{x}=$ mean.
Mean deviation from median $=\frac{\sum\limits_{i=1}^n f_i\left|x_i-M\right|}{\sum\limits_{i=1}^n f_i}$
where $M=$ median.
Mean Deviation (M.D) for Ungrouped Data
M.D. $(a)=\frac{\sum\limits_{i=1}^n\left|x_i-a\right|}{n}$;
M.D. $(\bar{x})=\frac{\sum\limits_{i=1}^n\left|x_i-\bar{x}\right|}{n}$, where $\bar{x}$ is the mean of given observations;
M.D. $(M)=\frac{\sum\limits_{i=1}^n\left|x_i-M\right|}{n}$, where $M$ is the median of the given observations.
Range
If the distribution is grouped distribution, then its range is the difference between upper limit, of the maximum class and lower limit of the minimum class.
Note :
Coefficient of Range $=\frac{\text { difference of extreme values }}{\text { sum of extreme values }}=\frac{L-S}{L+S}$
where $L=$ largest value and $S=$ smallest value
Relationship Between Mean, Median and Mode :
mean = mode = median
• In skew (moderately asymmetrical) distribution,
median divides mean and mode internally in 1 : 2 ratio.
$\Rightarrow \quad$ median $=\frac{2(\text { Mean })+(\text { Mode })}{3}$
ARITHMETIC MEAN
$$ \begin{aligned} & \bar{x}=\frac{x_1+x_2+\ldots+x_n}{n}=\frac{\sum\limits_{i=1}^n x_i}{n} \\\\ & \Rightarrow \sum x_i=n \bar{x} \end{aligned} $$
ii. For ungrouped and grouped frequency distribution : If $x_1, x_2, \ldots . x_n$ are values of variable with corresponding frequencies $f_1, f_2, \ldots f_n$ then their A.M. is given by
$$ \bar{x}=\frac{f_1 x_1+f_2 x_2+\ldots+f_n x_n}{f_1+f_2+\ldots .+f_n}=\frac{\sum\limits_{i=1}^n f_i x_i}{N}, \text { where } N=\sum\limits _{i=1}^n f_i $$
iii. Assumed Mean Method : If the value of $x_i$ are large, then the calculation of A.M. by using previous formula is quite time consuming. In such case we take deviation of variable from an arbitrary point $a$.
Let $d_i=x_i-a$
$\therefore \bar{x}=a+\frac{\sum f_i d_i}{N}$, where $a$ is assumed mean.
Mode
Method for determining mode :
(i) For ungrouped distribution : The value of that variate which is repeated maximum number of times.
(ii) For ungrouped frequency distribution : The value of that variate which have maximum frequency.
Median For Grouped Frequency Distribution
$$ \begin{aligned} & \therefore \text { Median(M) }=l+\frac{\left(\frac{N}{2}-F\right)}{f} h \\\\ & \text { where } \\\\ & l=\text { lower limit of median class } \\\\ & f=\text { frequency of median class } \\\\ & F=\text { cumulative frequency (c.f.) of the class preceding median class } \\\\ & h=\text { class interval of median class } \end{aligned} $$
Median For Ungrouped Frequency Distribution
$$ \text { Median }=\left[\begin{array}{l} \left(\frac{N+1}{2}\right)^{\text {th }} \text { term, (when } N \text { is odd) } \\\\ \text { Mean of }\left(\frac{N}{2}\right)^{\text {th }} \text { and }\left(\frac{N}{2}+1\right)^{\text {th }} \text { terms, (when } N \text { is even) } \end{array}\right. $$
Median For Ungrouped Distribution
Formulae of median
For ungrouped distribution : Let $n$ be the number of variate in a series then
$$ \text { Median }=\left[\begin{array}{l} \left(\frac{n+1}{2}\right)^{\text {th }} \text { term, (when } n \text { is odd) } \\\\ \text { Mean of }\left(\frac{n}{2}\right)^{\text {th }} \text { and }\left(\frac{n}{2}+1\right)^{\text {th }} \text { terms, (when } n \text { is even) } \end{array}\right. $$
Combined Mean
If there are more than two groups then, combined mean $=\frac{n_1 \bar{x}_1+n_2 \bar{x}_2+n_3 \bar{x}_3+\ldots}{n_1+n_2+n_3+\ldots}$
Properties of AM
$$ \text { i.e. } \sum\left(x_i-\bar{x}\right)=0, \quad \sum f_i\left(x_i-\bar{x}\right)=0 $$
2. Sum of square of deviations of variate from their AM is minimum i.e. $\sum\left(x_i-\bar{x}\right)^2$ is minimum
3. If $\bar{x}$ is the mean of variable $x_i$ then
$\mathrm{AM}$ of $\left(x_i+\lambda\right)=(\bar{x}+\lambda)$
$\operatorname{AM}$ of $\left(\lambda x_i\right)=\lambda \bar{x}$
$\mathrm{AM}$ of $\left(a x_i+b\right)=a \bar{x}+b$
(where $\lambda, a, b$ are constants)
Weighted Means for Frequency Data
$$ \begin{aligned} & \text { then Weighted Arithmetic Mean }=A=\frac{x_1 a_1+x_2 a_2+\ldots . .+x_n a_n}{x_1+x_2+\ldots . .+x_n} \\\\ & \text { Weighted Geometric Mean }=G=\left(a_1^{x_1} \cdot a_2^{x_2} \ldots . . a_n^{x_n}\right) ^\frac{1}{x_1+x_2+\ldots .+x_n} \\\\ & \text { Weighted Harmonic Mean }=H=\frac{x_1+x_2+\ldots . .+x_n}{\frac{x_1}{a_1}+\frac{x_2}{a_2}+\ldots . .+\frac{x_n}{a_n}} \end{aligned} $$
HARMONIC MEAN
$$ H=\frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+\ldots .+\frac{1}{x_n}}=\frac{n}{\sum\limits _{i=1}^n \frac{1}{x_i}} $$
GEOMETRIC MEAN
$$ G=\left(x_1 \cdot x_2 \cdot x_3 \ldots \ldots x_n\right)^{1 / n} $$