Solution of Quadratic Equation
Equation of the form $a x^2+b x+c=0$ where $a, b, c \in R$ and $a \neq 0$ is called a quadratic equation, where $a, b, c$ are coefficients of this equation.
first divide it by $a$.
we get $x^2+\frac{b}{a} x+\frac{c}{a}=0$
$$ \begin{aligned} &\Rightarrow \left(x+\frac{b}{2 a}\right)^2+\frac{c}{a}-\frac{b^2}{4 a^2}=0 \\\\ &\Rightarrow \left(x+\frac{b}{2 a}\right)^2=\left(\frac{b^2-4 a c}{4 a^2}\right) \\\\ &\Rightarrow x+\frac{b}{2 a}=\pm \sqrt{\frac{b^2-4 a c}{4 a^2}} \\\\ &\Rightarrow x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \end{aligned} $$
first divide it by $a$.
we get $x^2+\frac{b}{a} x+\frac{c}{a}=0$
$$ \begin{aligned} &\Rightarrow \left(x+\frac{b}{2 a}\right)^2+\frac{c}{a}-\frac{b^2}{4 a^2}=0 \\\\ &\Rightarrow \left(x+\frac{b}{2 a}\right)^2=\left(\frac{b^2-4 a c}{4 a^2}\right) \\\\ &\Rightarrow x+\frac{b}{2 a}=\pm \sqrt{\frac{b^2-4 a c}{4 a^2}} \\\\ &\Rightarrow x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \end{aligned} $$
Roots of Quadratic Equation
For the quadratic equation $a x^2+b x+c=0(a \neq 0)$ has two roots, given by
$$ \alpha=\frac{-b+\sqrt{b^2-4 a c}}{2 a} \text { and } \beta=\frac{-b-\sqrt{b^2-4 a c}}{2 a} $$
NOTE :
(a) Every quadratic equation has two and only two roots.
(b) The expression $b^2-4 a c=D$ is called the discriminant of the quadratic equation.
(c) If $\alpha$ and $\beta$ are the roots of the quadratic equation $a x^2+b x+c=0$, then:
$\begin{array}{lll}\text { (i) } \alpha+\beta=-b / a & \text { (ii) } \alpha \beta=c / a & \text { (iii) }|\alpha-\beta|=\sqrt{D} /|a|\end{array}$
(d) A quadratic equation whose roots are $\alpha$ and $\beta$ is $(x-\alpha)(x-\beta)=0$
i.e., $x^2-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^2-$ (sum of roots) $x+$ product of roots $=0$.
$$ \alpha=\frac{-b+\sqrt{b^2-4 a c}}{2 a} \text { and } \beta=\frac{-b-\sqrt{b^2-4 a c}}{2 a} $$
NOTE :
(a) Every quadratic equation has two and only two roots.
(b) The expression $b^2-4 a c=D$ is called the discriminant of the quadratic equation.
(c) If $\alpha$ and $\beta$ are the roots of the quadratic equation $a x^2+b x+c=0$, then:
$\begin{array}{lll}\text { (i) } \alpha+\beta=-b / a & \text { (ii) } \alpha \beta=c / a & \text { (iii) }|\alpha-\beta|=\sqrt{D} /|a|\end{array}$
(d) A quadratic equation whose roots are $\alpha$ and $\beta$ is $(x-\alpha)(x-\beta)=0$
i.e., $x^2-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^2-$ (sum of roots) $x+$ product of roots $=0$.
Relation between Roots and Coefficients
If roots of quadratic equation $a x^2+b x+c=0(a \neq 0)$ are $\alpha$ and $\beta$ then
(i) $|\alpha-\beta|=\sqrt{(\alpha+\beta)^2-4 \alpha \beta}=\left|\frac{\sqrt{b^2-4 a c}}{a}\right|=\left|\frac{\sqrt{D}}{a}\right|$
(ii) $\alpha^2+\beta^2=(\alpha+\beta)^2-2 \alpha \beta=\frac{b^2-2 a c}{a^2}$
(iii) $\left|\alpha^2-\beta^2\right|=|\alpha+\beta| \sqrt{(\alpha+\beta)^2-4 \alpha \beta}=\left|\frac{b \sqrt{b^2-4 a c}}{a^2}\right|$
(iv) $\alpha^3+\beta^3=(\alpha+\beta)^3-3 \alpha \beta(\alpha+\beta)=-\frac{b\left(b^2-3 a c\right)}{a^3}$
(v) $$ \begin{aligned} \alpha^3-\beta^3 &=(\alpha-\beta)^3+3 \alpha \beta(\alpha-\beta) \\ &=(\alpha-\beta)\left\{(\alpha+\beta)^2-\alpha \beta\right\} \end{aligned} $$
(vi) $\alpha^4+\beta^4=\left\{(\alpha+\beta)^2-2 \alpha \beta\right\}^2-2 \alpha^2 \beta^2$
(vii) $\alpha^4-\beta^4=\left(\alpha^2-\beta^2\right)\left(\alpha^2+\beta^2\right)$
$$ =(\alpha-\beta)(\alpha+\beta)\left((\alpha+\beta)^2-2 \alpha \beta\right) $$
(viii) $\alpha^2+\alpha \beta+\beta^2=(\alpha+\beta)^2-\alpha \beta$
(ix) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^2+\beta^2}{\alpha \beta}=\frac{(\alpha+\beta)^2-2 \alpha \beta}{\alpha \beta}$
(x) $\alpha^2 \beta+\beta^2 \alpha=\alpha \beta(\alpha+\beta)$
(xi) $\left(\frac{\alpha}{\beta}\right)^2+\left(\frac{\beta}{\alpha}\right)^2=\frac{\alpha^4+\beta^4}{\alpha^2 \beta^2}=\frac{\left(\alpha^2+\beta^2\right)^2-2 \alpha^2 \beta^2}{\alpha^2 \beta^2}$
(i) $|\alpha-\beta|=\sqrt{(\alpha+\beta)^2-4 \alpha \beta}=\left|\frac{\sqrt{b^2-4 a c}}{a}\right|=\left|\frac{\sqrt{D}}{a}\right|$
(ii) $\alpha^2+\beta^2=(\alpha+\beta)^2-2 \alpha \beta=\frac{b^2-2 a c}{a^2}$
(iii) $\left|\alpha^2-\beta^2\right|=|\alpha+\beta| \sqrt{(\alpha+\beta)^2-4 \alpha \beta}=\left|\frac{b \sqrt{b^2-4 a c}}{a^2}\right|$
(iv) $\alpha^3+\beta^3=(\alpha+\beta)^3-3 \alpha \beta(\alpha+\beta)=-\frac{b\left(b^2-3 a c\right)}{a^3}$
(v) $$ \begin{aligned} \alpha^3-\beta^3 &=(\alpha-\beta)^3+3 \alpha \beta(\alpha-\beta) \\ &=(\alpha-\beta)\left\{(\alpha+\beta)^2-\alpha \beta\right\} \end{aligned} $$
(vi) $\alpha^4+\beta^4=\left\{(\alpha+\beta)^2-2 \alpha \beta\right\}^2-2 \alpha^2 \beta^2$
(vii) $\alpha^4-\beta^4=\left(\alpha^2-\beta^2\right)\left(\alpha^2+\beta^2\right)$
$$ =(\alpha-\beta)(\alpha+\beta)\left((\alpha+\beta)^2-2 \alpha \beta\right) $$
(viii) $\alpha^2+\alpha \beta+\beta^2=(\alpha+\beta)^2-\alpha \beta$
(ix) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^2+\beta^2}{\alpha \beta}=\frac{(\alpha+\beta)^2-2 \alpha \beta}{\alpha \beta}$
(x) $\alpha^2 \beta+\beta^2 \alpha=\alpha \beta(\alpha+\beta)$
(xi) $\left(\frac{\alpha}{\beta}\right)^2+\left(\frac{\beta}{\alpha}\right)^2=\frac{\alpha^4+\beta^4}{\alpha^2 \beta^2}=\frac{\left(\alpha^2+\beta^2\right)^2-2 \alpha^2 \beta^2}{\alpha^2 \beta^2}$
Polynomial Equation of degree n
Now comparing the coefficients from above identity (1) and (2) then
Sum of the roots taking one at a time
Sum of product of roots taken two at a time
Sum of product of roots taken three at a time
Product of the all roots
Nature of Roots
In quadratic equation $a x^2+b x+c=0$, the term $b^2-4 a c$ is called discriminant of the equation, which plays an important role in finding the nature of the roots. It is denoted by $\Delta$ or $D$.
(a) Suppose $a, b, c \in \mathbf{R}$ and $a \neq 0$ then
(i) If $D > 0 \Rightarrow$ Roots are real and unequal
(ii) If $D=0 \Rightarrow$ Roots are real and equal and each equal to $-b / 2 a$
(iii) If $D < 0 \Rightarrow$ Roots are imaginary and unequal or complex conjugate.
(b) Suppose $a, b, c \in Q$ and $a \neq 0$ then
(i) If $D>0$ and $D$ is perfect square
$\Rightarrow$ Roots are unequal and Rational
(ii) If $D>0$ and $D$ is not perfect square
$\Rightarrow$ Roots are irrational and unequal
Therefore, we can conclude the following results.
1. If $D_1$ and $D_2$ are discriminant of two quadratic equations and $D_1+D_2 \geq 0$ then atleast one $D_1$ and $D_2 \geq 0$.
$\Rightarrow$ Atleast one of the equations has real roots
2. $D_1+D_2<0$
$\Rightarrow$ At least one of $D_1$ and $D_2<0$.
$\Rightarrow$ At least one of the equations has imaginary root.
3. If $D_1$ is the discriminant of the equation $a_1 x^2+b_1 x+c_1=0$ and $D_2$ is the discriminant of the equation $a_2 x^2+b_2 x + c_2=0$ and
$\left(a_1 x^2+\right.$ $\left.b_1 x+c_1\right)\left(a_2 x^2+b_2 x + c_2\right)=0$ .........(1)
(i) $D_1 D_2<0 \Rightarrow D_1>0$ and $D_2<0$ or $D_1<0$ and $D_2>0$
Then equation (1) has two real roots.
(ii) $D_1 D_2>0$
Case I: $D_1>0$ and $D_2>0$
Then equation (1) has four real roots.
Case II: $D_1<0$ and $D_2<0$
Then equation (1) has no real roots.
(iii) $D_1 D_2=0$
Case I: $D_1>0$ and $D_2=0$ or $D_1=0$ and $D_2>0$
Then equation (1) has two equal real roots and two distinct roots.
Case II: $D_1<0$ and $D_2=0$ or $D_1=0$ and $D_2<0$
Then equation (1) has two equal real roots.
Case III: $D_1=0$ and $D_2=0$
Then equation (1) has real roots each repeated twice.
(a) Suppose $a, b, c \in \mathbf{R}$ and $a \neq 0$ then
(i) If $D > 0 \Rightarrow$ Roots are real and unequal
(ii) If $D=0 \Rightarrow$ Roots are real and equal and each equal to $-b / 2 a$
(iii) If $D < 0 \Rightarrow$ Roots are imaginary and unequal or complex conjugate.
(b) Suppose $a, b, c \in Q$ and $a \neq 0$ then
(i) If $D>0$ and $D$ is perfect square
$\Rightarrow$ Roots are unequal and Rational
(ii) If $D>0$ and $D$ is not perfect square
$\Rightarrow$ Roots are irrational and unequal
Therefore, we can conclude the following results.
1. If $D_1$ and $D_2$ are discriminant of two quadratic equations and $D_1+D_2 \geq 0$ then atleast one $D_1$ and $D_2 \geq 0$.
$\Rightarrow$ Atleast one of the equations has real roots
2. $D_1+D_2<0$
$\Rightarrow$ At least one of $D_1$ and $D_2<0$.
$\Rightarrow$ At least one of the equations has imaginary root.
3. If $D_1$ is the discriminant of the equation $a_1 x^2+b_1 x+c_1=0$ and $D_2$ is the discriminant of the equation $a_2 x^2+b_2 x + c_2=0$ and
$\left(a_1 x^2+\right.$ $\left.b_1 x+c_1\right)\left(a_2 x^2+b_2 x + c_2\right)=0$ .........(1)
(i) $D_1 D_2<0 \Rightarrow D_1>0$ and $D_2<0$ or $D_1<0$ and $D_2>0$
Then equation (1) has two real roots.
(ii) $D_1 D_2>0$
Case I: $D_1>0$ and $D_2>0$
Then equation (1) has four real roots.
Case II: $D_1<0$ and $D_2<0$
Then equation (1) has no real roots.
(iii) $D_1 D_2=0$
Case I: $D_1>0$ and $D_2=0$ or $D_1=0$ and $D_2>0$
Then equation (1) has two equal real roots and two distinct roots.
Case II: $D_1<0$ and $D_2=0$ or $D_1=0$ and $D_2<0$
Then equation (1) has two equal real roots.
Case III: $D_1=0$ and $D_2=0$
Then equation (1) has real roots each repeated twice.