VERNIER CALIPERS
Least count (LC) = Length of one main scale division
- Length of one vernier scale division
LC = 1 MSD - 1 VSD
Vernier scale reading (VSR): If nth division of Vernier scale coincides with some division on main scale, then Vernier scale reading is n × LC.
Total reading = MSR + VSR
Total reading = MSR + n × Least Count
SCREW GAUGE
Pitch of the screw
Least Count =
When nth division of circular scale is aligned with reference line then circular scale reading is n multiplied with least count (CSR = n LC).
Linear scale reading and circular scale reading
are added to get the total reading.
Total reading = LSR + CSR
Total Reading = LSR + n × LC.
Angle and Distance
Angle $=\frac{\text { arc }}{\text { radius }}$
or $\theta=\frac{a}{D}$,
Here $a$ is the length of arc and $D$ is the radius.
$1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}$
1 Light year $=9.46 \times 10^{15} \mathrm{~m}$
or $\theta=\frac{a}{D}$,
Here $a$ is the length of arc and $D$ is the radius.
$1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}$
1 Light year $=9.46 \times 10^{15} \mathrm{~m}$
Errors in Measurement
Let $x_1, x_2, x_3 \ldots \ldots x_n$ be the measured values of a given physical quantity $x$ then
1. $x_{\text {mean }}=\frac{x_1+x_2+\cdots+x_n}{n}$
$$ x_{\text {mean }}=\frac{\sum_{i=1}^{i=n} x_i}{n} $$
2. Mean absolute error,
$$ \Delta x_{\text {mean }}=\frac{\left|\Delta x_1\right|+\left|\Delta x_2\right|+\cdots+\left|\Delta x_n\right|}{n} $$
$$ =\frac{\sum_{i=1}^{i=n}\left|\Delta x_i\right|}{n} $$
where $\left|\Delta x_1\right|=\left|x_1-x_{\text {mean }}\right|$,
$\left|\Delta x_2\right|=\left|x_2-x_{\text {mean }}\right|$ and so on.
3. Fractional error/Relative error
$$ =\frac{\Delta x_{\text {mean }}}{x_{\text {mean }}} $$
4. Percentage error
$$ =\frac{\Delta x_{\text {mean }}}{x_{\text {mean }}} \times 100 $$
1. $x_{\text {mean }}=\frac{x_1+x_2+\cdots+x_n}{n}$
$$ x_{\text {mean }}=\frac{\sum_{i=1}^{i=n} x_i}{n} $$
2. Mean absolute error,
$$ \Delta x_{\text {mean }}=\frac{\left|\Delta x_1\right|+\left|\Delta x_2\right|+\cdots+\left|\Delta x_n\right|}{n} $$
$$ =\frac{\sum_{i=1}^{i=n}\left|\Delta x_i\right|}{n} $$
where $\left|\Delta x_1\right|=\left|x_1-x_{\text {mean }}\right|$,
$\left|\Delta x_2\right|=\left|x_2-x_{\text {mean }}\right|$ and so on.
3. Fractional error/Relative error
$$ =\frac{\Delta x_{\text {mean }}}{x_{\text {mean }}} $$
4. Percentage error
$$ =\frac{\Delta x_{\text {mean }}}{x_{\text {mean }}} \times 100 $$